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ABSTRACT 

This paper investigates the influence of physical track 
conditions in the vicinity of a rail joint on the fatigue life of 
the joint bars.  Recent derailments due to broken joint bars, 
such as the Minot, ND accident in January 2002, have 
highlighted the need for better understanding of the effects of 
joint conditions on premature joint bar failure.  Fatigue life 
estimates can be used to guide the selection of inspection 
intervals for joint bars in service. 

Engineering approximations are used to infer the dynamic 
load factor at a rail joint due to joint characteristics including: 

• rail end gap 
• joint efficiency (looseness) 
• track stiffness (vertical foundation modulus) 
A three-dimensional finite element analysis of a rail joint 

is conducted and the dynamic load is applied to develop an 
estimate of the live (bending) stresses at the joint due to 
passing wheels.  These stresses are then used to estimate the 
fatigue life of the joint bars. 

The methodology is demonstrated for 132RE rail with 
companion joint bars.  The effect of thermal expansion (or the 
temperature difference below the rail neutral temperature) is 
investigated.  Typical wheel loads and railcar speeds are 
considered and results are presented for a baseline a joint 
condition. 

INTRODUCTION 
Past rail integrity research has focused on defects that 

occur in continuous welded rail (CWR).  For example, 
particular attention has been given to the formation and 
growth of an internal rail defect called a detail fracture [1, 2].  
Although research has been conducted to examine bolt-hole 
cracking [3, 4, 5], the structural integrity of bolted rail joints 
has not been studied as thoroughly as that in CWR.  The 
emphasis on defects in continuous welded rail stems, in large 
part, from the increasing trend in the railroad industry to 
replace bolted joint rail with CWR.  Rail joints, however, 
cannot be completely eliminated.  For example, bolted joints 
are sometimes used to connect strings of CWR.  Bolted joints 
are frequently used for temporary repairs, and may also be 
used in sharp curves in which rapid wear may require frequent 
rail replacement.  Insulated joints are used to isolate the 
electric current within certain sections of track, and as such 
can be used as a means to detect broken rails. 

Jensen [6] examined fatigue life of joint bars 
experimentally using rolling-load tests and noted the 
important fact that bars failed more often at the head than at 
the base. Fatigue and fracture of railroad joint bars were 
examined in a recent study of certain aspects related to the 
structural integrity of bolted rail joints [7]. 

The structural integrity of bolted rail joints has come 
under scrutiny because joint failures have been involved in 
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recent train derailments, which in turn have led to the 
accidental release of hazardous material: 

• In March 1996, more than 3,000 people were 
evacuated in Weyauwega, Wisconsin when seven 
tank cars filled with liquid propane gas derailed and 
caught fire.  The cause of the derailment is believed 
to have been a broken switch-point rail, which 
originated from an undetected bolt-hole crack. 

• In May 2000, 33 of 113 cars derailed near Eunice, 
Louisiana.  The derailment resulted in a release of 
hazardous materials with explosions and fires.  About 
3,500 people were evacuated from the surrounding 
area.  An investigation conducted by the National 
Transportation Safety Board (NTSB) determined that 
the probable cause was the failure of a set of joint 
bars that had remained in service with undetected 
defects. 

• In January 2002, 31 of 112 cars derailed near Minot, 
North Dakota.  Several tank cars released over 
200,000 gallons of anhydrous ammonia, which 
resulted in one fatality, over 300 injuries, and 
affected over 15,000 local residents.  Broken joint 
bars and undetected defects were involved in this 
derailment. 

The increased visibility of bolted joint fatigue failures 
calls for a methodical engineering analysis to guide the 
selection of inspection intervals. In this paper, a methodology 
for determining fatigue life estimates of bolted rail joints is 
developed and applied to a baseline rail joint scenario. 

DYNAMIC WHEEL LOAD ESTIMATION 
The calculation of vertical dynamic loads is based on a 

modification of a method originally developed by British Rail 
[9].  Referring to Figure 1, the vertical dynamic loads 
resulting from wheel/rail impact at a joint are assumed to 
consist of a short-time peak (P1 load) and a delayed peak (P2 
load).  The short-time peak is associated with battering of the 
rail-end corner by the unsprung mass of the wheel set.  The 
delayed peak is associated with rail bending, which is a more 
resilient deformation mode than corner batter.  Consequently, 
P1 is larger than P2, and the difference between the short-time 
and delayed peaks increases as the train speed increases.  
Also, the duration of the delayed peak is about four to ten 
times the duration of the short-time peak.  Moreover, P1 is 
related to the inertias of the rail and ties, while P2 is 
transmitted to the ballast, which produces track deflections.  
In this study, the effect of various track and operational 
parameters on the P2 load is examined. 
 

 
Figure 1:  Variation of dynamic load due to wheel/rail 

contact at joint. 
 
The AREMA Manual for Railway Engineering cites the 

following formula for dynamic load factor (DLF) [8]: 
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where Vmph is the train velocity in miles per hour and D is the 
wheel diameter in inches.  The total wheel load is then 
calculated as the product of the dynamic load factor and the 
static wheel load, P0: 
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where P0 is the static wheel load and R is the wheel radius in 
inches.  These equations, however, apply to a continuous rail.  
That is, equations (1) and (2) apply to rails without joints. 

The present study involves the calculation of dynamic 
loads at rail joints. The equations of motion for a wheel 
moving at constant speed along a track with a rail joint are 
derived and presented in [7].  The analysis assumes that the 
vector direction of the velocity changes suddenly when the 
wheel encounters the rail joint. 

Referring to Figure 1, the delayed-peak or P2 load is 
calculated from 
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where Mu is the unsprung mass of the wheelset, Kr is the rail 
stiffness, V is the train speed, R is the wheel radius and α is 
the effective joint dip angle.  The effective joint dip angle is 
considered to be comprised of four parts.  The first 
contributor, α1, is related to dip angle that would occur in 
continuous rail (if the joint were not present).  The remaining 
components of α (α2, α3, α4,) are related to the physical 
conditions at the joint, namely rail end gap, rail bending and 
rail end batter (or height mismatch).  The derivation of the 
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components of the effective dip angle is described in 
Appendix A. 
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Given the following assumptions 
 

Mu 4.53 lb-s2/in 
Kr 3.3×105 lb/in 
V 704 in/s (40 mph) 
R 18 in 
α 0.055 radians assuming a rail end gap of ⅛ inch 

and no rail end batter or height mismatch (as 
shown in Appendix A) 

 
and a static load, P0 = 19,000 lb,1 the dynamic load at the 
joint, P2, from equation (3) is 27,739 lb and the DLF is P2/P0 
or 1.46.  When the wheel is not at the joint, the joint 
characteristics no longer contribute to the dynamic load, and 
the DLF is equal to that obtained from the AREMA formula in 
equation (1).  Assuming a wheel diameter D of 36 in, the DLF 
is 1.367 and the dynamic load PTOT is 25,973 lb from equation 
(2). 

ENGINEERING ESTIMATES OF STRESSES IN JOINT 
BARS 

For this study, 132RE rail and its companion 36-inch joint 
bars, shown in Figure 2, have been chosen to illustrate the 
method. 
 

 
Figure 2:  132RE rail and joint bar assembly [8]. 

 
The longitudinal bending moment distribution in a 

continuous rail is calculated from the equations for an infinite 
beam on elastic foundation, and is equal to 

                                                           
1 The static load, P0, was chosen based on AAR InteRRIS data and 

represents the average wheel load from 150 trains traveling over 12 wheel 
impact load detector (WILD) sites sampled three times in a 12-month 
period. 
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where P is the dynamic wheel load from equation (3), P2, and  
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in which kv is the rail foundation modulus (3,000 lb/in/in is 
assumed here), E is the modulus of elasticity (30x106 psi is 
assumed for rail steel), and IR is the rail bending inertia (88.2 
in4).  The bending moment is maximum at the point of 
application of the load (x=0) where 
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Joint bars are also assumed to behave as beams in 
bending and are assumed to carry only a fraction of the 
moment in a continuous rail.  This fraction is called the joint 
efficiency factor, β.  Laboratory and field tests indicate that 
the joint efficiency factor depends on the condition of the joint 
(i.e., looseness of the joint2), but for a good joint it varies 
between 0.6 and 0.8 [9].  The theoretical maximum joint 
efficiency factor is  
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where IJ and IR are the vertical bending inertias for the joint 
bars and rail respectively.  

The bending moment carried by the joint bars (MJ) is 
assumed to be 
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The maximum bending stress at the top of the joint bar is 
compressive when the wheel is located at the joint and is 
equal to  

J

JJ
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where cJ is the distance from the joint bar neutral axis to the 
top of the joint bar (2.42 in) as shown in Figure 3 and IJ is the 
moment of inertia of the joint bar pair (32.38 in4). 
 

                                                           
2 The looseness of the joint may be related to tension in the bolts.  However, 

the relationship between looseness of the joint and bolt tension or torque is 
not examined here.  Moreover, the joint efficiency factor is used as a gross 
measure of the joint condition. 



 
Figure 3:  Depth to neutral axis of joint bar, cJ. 

 
As the wheel moves away from the joint location, the 

moment distribution evolves and the rail is subjected to 
reverse bending.  The maximum reverse bending stress at the 
top of the joint bar is tensile and occurs when the wheel is a 
distance xrb from the joint, which is determined by 
differentiating equation (4).  The moment at this location is 
determined by applying equation (4) with P=PTOT.  The stress 
in the joint bar is related to the moment at this location and is 
equal to 
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Each wheel pass is assumed to create a single stress cycle.  
For the purposes of estimating fatigue life, the SJ- and SJ+ 
stresses represent one loading cycle.  Each wheel in this 
analysis is assumed to have the same static load and cause the 
same amount of fatigue damage with each pass. 

The fatigue life of joint bars is adversely affected by 
stresses imposed by rail thermal contraction when the ambient 
temperature is below the rail neutral temperature.  The thermal 
load in rail, Pth, is equal to 

TEAP thRth Δ= α  (11) 
where AR is the rail cross-sectional area (12.95 in2 for 132RE 
rail) (83.55 cm2), αth is coefficient of thermal expansion (for 
rail steel, 6.5×10-6/°F is assumed) (117×10-3/ºC) and ΔT is the 
temperature difference below neutral (°F).  Thermal loads are 
imparted to the joint bars when the rail longitudinal 
displacement exceeds the gap distance between the joint bolts 
and the drilled holes in the rail end.  For a 1 in bolt in a 1⅛ in 
hole, a temperature differential ΔT of approximately 10°F is 
required to cause the joint bolts to begin to carry thermal load, 
assuming that the rail longitudinal resistance is 15 lb/in (a 
typical value for an every-other-tie anchoring pattern).  For 
greater ΔT the thermal load imparts a tensile stress, Sth, in the 
joint bar 

J

th
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where AJ is the joint bar cross-sectional area (11.78 in2 for 
132RE joint bars).  For the baseline fatigue life estimate, ΔT is 
assumed to be 20°F. 

FINITE ELEMENT ESTIMATES OF STRESSES IN 
JOINT BARS 

Two finite element models are used to estimate the 
magnitude of the live stresses used in the fatigue calculations.    
One model is used to calculate stresses when the wheel is 
directly over the joint; the other model is used to calculate the 
reverse bending stresses when the wheel is at a distance xrb, 
from the joint, as defined previously. Separate models are 
utilized to take advantage of the symmetries of both loading 
scenarios. The wheel-over-joint loading condition possesses 
longitudinal symmetry across the vertical plane in the center 
of the rail gap; no such longitudinal symmetry exists for the 
reverse bending condition (see Figure 4). Hence, separate 
models are used for each condition with the appropriate 
symmetry constraints (see Figures 5 and 6). Lateral symmetry 
is assumed for both loading conditions; lateral wheel loads are 
not treated in this paper. The reverse bending model geometry 
is identical to the wheel-over-joint model plus its mirror image 
reflected across the rail gap. All other attributes are shared. 
Therefore, the features of the models are discussed together. 
Both models are depicted in Figures 5 and 6. The wheel-over-
joint model contains approximately 37,000 first-order, 
hexahedral elements and 57,000 nodes. The commercial code 
ABAQUS is used for analysis [10]. 

 
Figure 4 Top: Loading condition of wheel at joint possesses 
longitudinal symmetry. Bottom: No longitudinal symmetry 
exists for the reverse bending condition (Not to scale). 
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Figure 5: Diagram of SJ- rail joint model (quarter-
symmetry). 

 
Figure 6: Diagram of SJ+ rail joint model (half-symmetry) 
 

Salient features of the models are shown in Figures 7 
through 11. Referring to Figure 7, the following features are 
labeled: lateral symmetry is enforced at the joint bar center 
plane A in the wheel-over-joint model through boundary 
conditions. The distance between the end of the rail and the 
symmetry plane of the joint bar is one-half the rail joint gap 
(shown more clearly in Figure 8). In the case studied here, the 
rail joint gap, g is 1/8 in.  Springs are located at point B 
between the rail and ground to represent the vertical and 
longitudinal foundation stiffness. These springs are centered 
across the joint with a 20 in spacing. The spring constant for 
20 in tie pitch and a 3,000 lb/in/in foundation modulus is 
60,000 lb/in. At location C, constraint equations are applied to 
the nodes on this face to couple these elements to beam 
elements. The beam elements extend from C approximately 
200 in to model the rest of the rail in a computationally 

efficient manner. A multi-point constraint3 is defined so that 
the nodes on the face of the rail at C remain planar during 
loading [10]. The rotation and vertical displacement of this 
face are coupled to a reference node. The beam elements 
connect to this reference node and extend to the right 
approximately 200 in, with springs modeling the ties and 
foundation spaced at 20 in intervals (see Figure 9).  

 
Figure 7: Lateral view of model with salient features 
labeled. A. The center cross-section of the joint bar. B. 
Location of the foundation springs. C. Multi-point 
constraint connecting solid elements to beam elements. 
 

 
Figure 8: Close-up view of A. The half rail gap distance g/2 
is shown. 
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3 The constraints are enforced in ABAQUS through the *COUPLING 
and *DISTRIBUTING options. 



 
Figure 9: Connection of beam elements to solid elements. 
Beam elements representing rail and spring elements 
representing foundation continue beyond the edge of the 
picture. 
 

Contact capabilities within ABAQUS are used to define 
interactions between the bolts and the joint bar, between the 
joint bar and the rail, and between the bolts and the rail. 
Initially, weak springs are attached to the joint bar to remove 
rigid body displacement modes. An initial step is used to 
tighten the bolts, clamping the joint bar to the rail. This is 
accomplished with the prescribed assembly load capability in 
ABAQUS [10]4. The baseline bolt tension is 7,500 lb. Once 
contact is established between the joint bar and rail by the 
bolts, the springs are removed from the joint bar. At this point, 
the analysis proceeds to the loading steps. 

Part of the joint bar manufacturing process is to create an 
easement, or depression, centered longitudinally in the head of 
the joint bar (under the rail gap, see Figure 10). This easement 
is intended to relieve knife-edge contact between the ends of 
the rail and the top of the joint bar by introducing some 
clearance between them. AREMA requires an easement of at 
least 3/64 in for rail sections over 119 lb/yd [8]. The 
implementation of the easement in the models is shown in 
cross-section at the center of the bar in Figure 11.  

Friction is defined between the bolt head bearing surface 
and the joint bar surface. A coefficient of friction of 0.2 is 
assumed. If the static friction is overcome, the joint bar and 
rail may displace longitudinally with respect to one another 
until the bolt shanks contact the bolt hole surfaces of the rail 
and bar. 

 
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.  Approved for 
public release; distribution is unlimited. 
 
 6  

                                                           
4 The *PRE-TENSION SECTION option is employed for this effect. 

After the initial tightening step, the bolt tension is allowed to vary based on 
the response of the structure. 

 
Figure 10: Recommended head easement for joint bars [8]. 
 

 
Figure 11: Close-up view of the easement at the center 
cross-section of the joint bar in the finite element models. 

 
In the wheel-over-joint model, the wheel is represented 

by a rigid cylindrical surface (see Figure 12). Loads are 
applied through the rigid surface to the rail through a contact 
interaction. The load is derived from Equation (3). 

 
Figure 12: Finite element model, including rigid wheel 
surface. 

 
In the reverse bending model, the wheel force is applied 

at a concentrated load at a node located a distance xrb from the 



joint. This node, illustrated in Figure 13, is part of the beam 
element portion of the model. The reverse bending load is 
calculated from Equation (2). 
 

 
Figure 13: Schematic of reverse bending load application 
point in finite element model. 
 
 

Results are extracted for the bending stresses SJ- and SJ+ 
for use in the fatigue life estimates. Figures 14 and 16 show 
the contours of the axial stressing the joint bars under both 
loading conditions. In both figures, the near end of the bar in 
the illustration is the cross-section of the joint bar at the center 
of the rail gap. The reverse bending case, Figure 14, shows 
axial stress varying linearly. This indicates that the joint bar is 
experiencing nearly pure bending about its major axis. The 
bolted joint behaves similarly to beam on elastic foundation 
when the load is applied away from the joint. This is shown in 
the displaced geometry plot in Figure 15. The load is applied 
at the point of maximum deflection. The figure shows that the 
joint, on the right, is deforming similarly to the rail beam 
elements on the left, and thus is behaving in a beam-like 
manner. 

 
Figure 14: Contours of bending stress SJ+ at baseline 
conditions. Bar is shown sectioned at the longitudinal 
symmetry plane. 
 

 
Figure 15: Portion of reverse bend model near load 
application point (deflection scaled by factor of 400). 

 
Contours of the axial stress for the wheel-over-joint 

condition are shown in Figure 16. These contours show a 
diagonal pattern indicative of two-axis bending. In this 
condition, the load is applied very near to the examined 
section of the joint bar. The pressure imparted by the 
underside of the rail head to the joint bar has a vertical and 
lateral component, due to the curved geometry. These 
components induce bending in the joint bar about both its 
major and minor principal axes. This behavior is not 
accounted for in the engineering estimate model. 
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Figure 16: Contours of bending stress SJ- at baseline 
conditions. Bar is shown sectioned at the longitudinal 
symmetry plane. 
 

FATIGUE LIFE ESTIMATES 
The rail fatigue properties used in the present calculations 

were derived from experiments conducted by Jensen [11].  
Comparisons with other rail fatigue data suggest that the 
Jensen data represent rail properties associated with fatigue 
lives in the first-percentile range.5

The calculations for the fatigue life of joint bars are 
carried out using Miner’s Law expressed as 
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in which N is the fatigue life in cycles, N0 represents infinite 
life (in cycles), S0 is the endurance limit, SU is the ultimate 
strength, and SM and SA are the mean stress and alternating 
stress, respectively.  The Jensen fatigue properties for rail steel 
are incorporated into this equation by assuming the following 
values: N0 = 107 cycles, S0 = 32,000 lb/in2, SU = 130,000 
lb/in2, and k =0.14.  The mean and alternating stresses in 
Equation (13) are calculated from 

                                                           
5 First-percentile life means the time at which one percent of a large 

population of rails can be expected to have formed a sharp, visible crack. 

( minmax2
1 SSSM += )  (14) 

minmax SSS A −=  (15) 
where Smax and Smin are the maximum and minimum stresses in 
a given load cycle (SJ+ and SJ-).  The fatigue life (in cycles) 
can be expressed in terms of million gross tons (MGT) of 
traffic by 

.
10*2000 6
0PN
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For the baseline conditions described above, the fatigue 
life of the joint bar is estimated to be nearly 1,700 MGT based 
on the engineering analysis and 41 MGT based on the finite 
element results.  The engineering analysis estimates a 
relatively long life for a nominally “good” joint under average 
freight train loads and modest temperature differential below 
the rail neutral temperature.  The finite element estimate for 
fatigue life is impacted negatively by the increased stress due 
to the effects of the two-axis bending. 
 

Table 1: Fatigue life estimates 

 EQN ENGINEERING 
ANALYSIS 

FINITE 
ELEMENT 
ANALYSIS 

SJ- 9 -17,484 lb/in2 -35,000 lb/in2 
SJ+ 10 4,300 lb/in2 4,000 lb/in2 
Sth 12 4,287 lb/in2 N/a 
Smin = SJ- + Sth  -13,197 lb/in2 -30,713 lb/in2 
Smax = SJ+ + Sth  8,587 lb/in2 8,287 lb/in2 
SM 14 -2,305 lb/in2 -11,213 lb/in2 
SA 15 21,784 lb/in2 39,000 lb/in2 
N (108 cycles) 13 1.77 0.044 
MGT 16 1,679 41 

  

CONCLUDING REMARKS 
The prescribed method in this paper may be used to 

estimate the fatigue life of bolted rail joints in a variety of 
conditions in addition to those investigated in this paper. The 
finite element model for reverse bending calculates joint bar 
bending stresses that are comparable to the engineering 
estimates based on beam on elastic foundation theory.  The 
engineering estimates are, therefore, an efficient method to 
estimate the tensile reverse bending stress at the top outer 
fiber of the joint bar, which is important for fatigue crack 
growth calculations. However, the finite element model for the 
wheel over the joint calculates stresses that are higher than the 
engineering approach. These results suggest that the 
engineering approach provides reasonable estimates for 
vertical bending only.  Moreover, the finite element analysis 
captures the combined effect of vertical and lateral bending; 
i.e., two-axis bending; which is not included in the beam 
theory approximations. 



 

FUTURE WORK 
The fatigue calculations in this paper assume that the bar 

and rail are stress-free in the unloaded state. However, both of 
these components contain residual stresses from 
manufacturing. Incorporating these stresses into the present 
analysis remains to be examined. A finite element analysis 
process for determining the residual stresses in rails has been 
investigated [12]; this method will also apply to the similarly 
manufactured joint bars. 

Additionally, geometric factors affecting the service life 
of bolted joints are not constant. Rail end batter, bolt 
loosening, rail height differential, joint camber, and out-to-out 
distances of joint bars may evolve over the service life of the 
joint components. A thorough study of these factors will be 
examined with the finite element models to give a more 
complete understanding of bolted joint fatigue. 
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APPENDIX A 
The effective joint dip angle is assumed to consist of four 

parts.  The first part is considered as the minimum value of α 
which applies to a continuous rail and correlates with the 
AREMA formula.  In other words, Equation (2) is equivalent 
to Equation (3) if 
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The three remaining components of α apply to the jointed 
rail.  Specifically, the wheel is assumed to travel over a step 
change in vertical position as it passes over the joint.  Figure 
A-1 shows a schematic of two sources for the change in 
vertical position.  In the first case, the wheel drops a vertical 
distance δ0 into the gap between rail ends.  The figure also 
shows a schematic of the other source for the change in 
vertical position; namely, rail bending. 



Δ 

δo 

R 

α 

b 

RR 

 
Figure A-1:  Change in vertical position of wheel as it 

passes over a rail joint. 
 

 
Figure A-2: Bolted joint moment free-body diagram. 
 
The dip angle from the wheel dropping into the gap 

between rail ends is 

R22
Δ

=α  (A-2) 

where Δ is the gap distance or distance between rail ends at 
the joint. 

Joint bars are assumed to behave as beams in bending.  
Referring to Figure A-2, the joint bar reaction is related to the 
bending moment by 

 
QbM =0β  (A-3) 

 
where β is the joint efficiency factor and M0 is obtained from 
Equation (7).   Thus, the joint bar reaction load is a function of 
the joint efficiency factor, and is calculated from 
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The joint bar reactions are translated into forces that act 

on the rail, as shown in Figure A-3.  The rails in the joint are 
assumed to behave as semi-infinite beams on elastic 
foundation.  When the wheel is located at the center of the 
joint (i.e., at x = 0), one-half of the wheel load is applied to 
each rail end in the joint.  The principle of superposition is 
then used for the three loads (P/2 and –Q applied at the rail 
end, and Q applied at a distance b from the end) to calculate 
depressions, slopes, and moments of the rail. 
 

 
Figure A-3:  Bolted joint shear free-body diagram. 

 
The dip angle from bending of the rail end at the joint is 

calculated from semi-infinite beam on elastic foundation 
theory [13]: 
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where P is the applied wheel load, Q is the joint-bar reaction 
load.  Also, 

2
Δ

−= bl  (A-6) 

where b is the half-length of the joint bar (18 inches).  
Because this component of the dip angle depends on the 
applied wheel load, the P2 load is calculated in an iterative 
manner. 

The fourth component of α accounts for another potential 
source for the change in vertical position of the wheel; 
namely, deformation of the rail ends due to batter.  In this 
analysis, rail-end batter is characterized by its depth and 
length. The angle to account for this effect is 

L
δα =4  (A-7) 

Thus, the effective dip angle is the sum of the four 
components described above 
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